

N-Channel MOSFET MEM8205F

General Description

MEM8205FG Dual N-channel enhancement mode field-effect transistor ,produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications, and low power dissipation.

Pin Configuration

Features

• 20V/6A

 $R_{DS(ON)} = 20m\Omega @ V_{GS} = 4.5V, I_{D} = 6A$

 $R_{DS(ON)}$ =21m Ω V_{GS}=3.85V,I_D=5A

 $R_{DS(ON)} = 26m\Omega \otimes V_{GS} = 2.5V, I_{D} = 4A$

- High Density Cell Design For Ultra Low On-Resistance
- Surface mount package:TSSOP8

Typical Application

- Battery management
- Power management
- Portable equipment
- Low power DC to DC converter.
- Load switch
- LCD adapter

Parame	Symbol	Ratings	Unit	
Drain-Source Voltage		V _{DSS}	20V	V
Gate-Source Voltage		V _{GSS}	±12	V
Drain Current	T _A =25℃	I _D	6	А
Pulsed Drain	Pulsed Drain Current ^{1,2}		20	А
Total Dower Dissipation	SOT23-6	Pd	1.25	W
Total Power Dissipation	TSSOP8	- Pa	1.5	
operating junction temperature		Tj	150	°C
Storage Temperature Range		T _{stg}	T _{stg} -65/150	

Thermal Characteristics

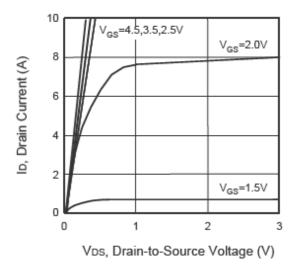
Parameter	Symbol	Ratings	Unit
Thermal Resistance, Junction-to-Ambient ³	RθJA	100	°C/W

Absolute Maximum Ratings

Electrical Characteristics

MEM8205FG

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
	ę	Static Characteristics				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250uA	20	21.5		V
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} = V _{GS} , I _D =250uA	0.5	0.66	1	V
Gate-Body Leakage	I _{GSS}	$V_{DS}=0V$, $V_{GS}=12V$			100	nA
		$V_{DS}=0V$, $V_{GS}=-12V$			-100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =16V V_{GS} =0V		2.5	1000	nA
Static Drain-Source	R _{DS(ON)}	V_{GS} =4.5V,I _D =6A		20	24	mΩ
On-Resistance		V _{GS} =3.85V,I _D =5A		21	25	mΩ
OII-Resistance		V _{GS} =2.5V,I _D =4A		26	35	mΩ
Forward Transconductance	g fs	$V_{\text{DS}} = 5V, I_{\text{D}} = 4.5\text{A}$		10		S
Drain-Source Diode Forward Current	I _S				1.7	А
Source-drain (diode forward) voltage	V_{SD}	V _{GS} =0V,I _S =1.25A		0.8	1.0	V
	Dy	namic Characteristic	s			
Input Capacitance	Ciss	$V_{DS} = 8 V,$		600		pF
Output Capacitance	Coss	V _{GS} = 0 V, f = 1 MHz		330		
Reverse Transfer Capacitance	Crss			140		
	Sw	vitching Characteristi	cs			
Turn-On Delay Time	td(on)	$V_{DD} = 10 V,$		8	20	ns
Rise Time	tr	R _L = 10 Ω		10	25	
Turn-Off Delay Time	td(off)	I _D =1 A, V _{GEN} = 4.5 V,		35	70	
Fall-Time	tf	Rg = 6 Ω		30	60	
Total Gate Charge	Qg	V _{DS} = 10 V,		10	15	nc
Gate-Source Charge	Qgs	$V_{GS} = 4.5 V,$		2.3		
Gate-Drain Charge	Qgd	I _D = 6A		2.9		


1. Pulse width limited by Max. junction temperature.

2 Pulse width <300us , duty cycle <2%.

3、Surface Mounted on FR4 Board, t < 10 sec.

Typical Performance Characteristics

Figure 1. Output Characteristics

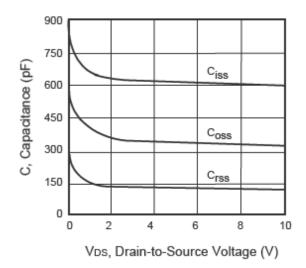


Figure 3. Capacitance

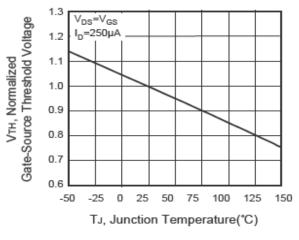


Figure 5. Gate Threshold Variation with Temperature

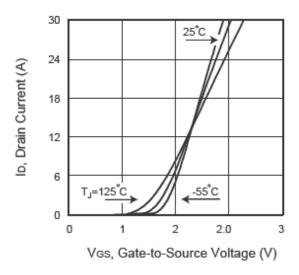


Figure 2. Transfer Characteristics

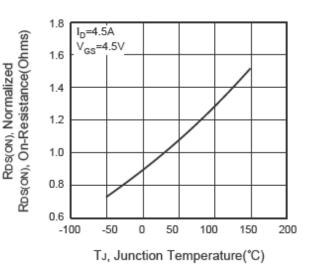


Figure 4. On-Resistance Variation with Temperature

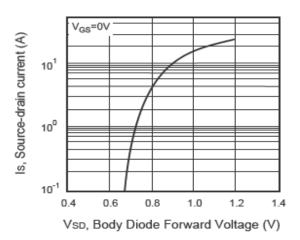
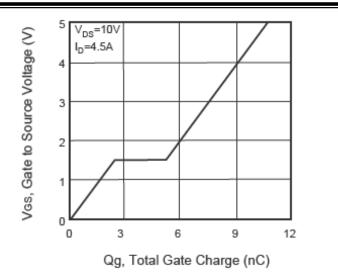



Figure 6. Body Diode Forward Voltage Variation with Source Current

MEM8205

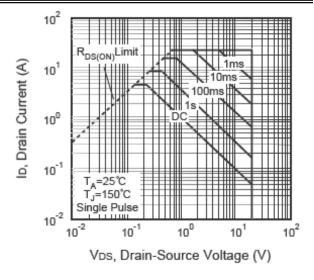


Figure 8. Maximum Safe Operating Area

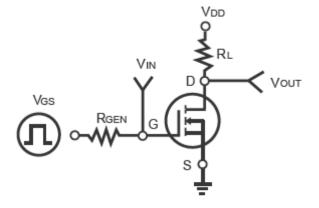


Figure 9. Switching Test Circuit

ton toff td(off) td(on) tf ana Vout INVERTED 10% 10% 90% 50% 50% Vin 10% PULSE WIDTH

Figure 10. Switching Waveforms

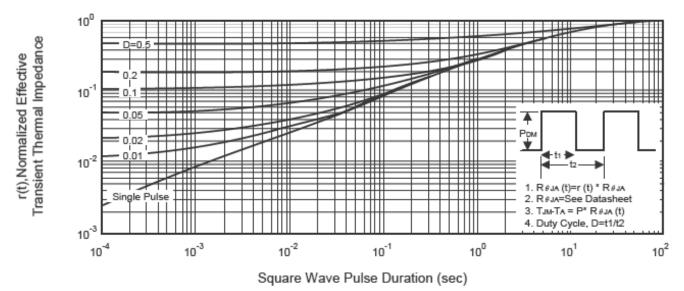
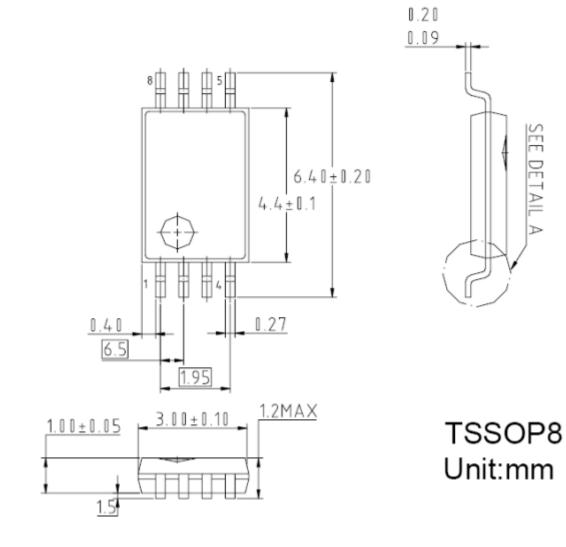



Figure 11. Normalized Thermal Transient Impedance Curve

SEE DETAIL A

Package Information

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

www.microne.com.cn