

P-Channel MOSFET MEM2313SG

General Description

MEM2313SG Series Dual P-channel enhancement mode field-effect transistor, produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications, and low power dissipation.

Features

• 30V/-6A

 $R_{DS(ON)} = 52m\Omega \otimes V_{GS} = -10V, I_D = -6A$

 $R_{DS(ON)}$ =67m Ω @ V_{GS}=-4.5V,I_D=-4A

- High Density Cell Design For Ultra Low On-Resistance
- Surface mount package:SOP8

Pin Configuration

Typical Application

- Power management
- Load switch
- Battery protection

Absolute Maximum Ratings

Param	eter	Symbol	Ratings	Units	
Drain-Source Voltage		V _{DSS}	-30V	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current	T_A=25 ℃		-6	A	
	T _A =70℃	Ъ	-4		
Pulsed Drain Current ^{1,2}		I _{DM}	-30	А	
Total Power Dissipation	T _A =25℃	Dd	1.3	W	
	T _A =70℃	Pu Pu	0.8		
Operating Junction Temperature Range		TJ	-40 ~ 150	°C	
Storage Temperature Range		T _{stg}	-55 ~ 150	°C	

Thermal Characteristics

Parameter	Symbol	Ratings	Units	
Thermal Resistance, Junction-to-Ambient ³	Steady-State	$R_{ extsf{ heta}JA}$	62.5	°C /W

Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Тур.	Max	Units	
Static Characteristics							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{(BR)DSS} V _{GS} =0V, I _D =-250µA		-34		V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$ -1.0		-1.3	-2.5	V	
	I _{GSS}	V _{DS} =0V, V _{GS} =20V		0.8	100	nA	
Сате-войу сеакаде		V _{DS} =0V, V _{GS} =-20V		-0.8	-100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-24V , V_{GS} =0V		-3.5	-300	nA	
Statia Drain Source On Registeres	R _{DS(ON)1}	V _{GS} =-10V, I _D =-6A 33		52	65	mΩ	
Static Drain-Source On-Resistance	R _{DS(ON)2}	V _{GS} =-4.5V, I _D =-4A	50	67	100	mΩ	
Forward Transconductance	g _{FS}	$V_{DS} = -5V, I_{D} = -5A$		10		S	
Drain-Source Diode Forward Current	I _S				-1.3	А	
Source-drain (diode forward) voltage	V _{SD}	V _{GS} =0V, I _S =-1A		-0.8	-1.2	V	
Dynamic Characteristics							
Input Capacitance	Ciss	V _{DS} = -15V,		530			
Output Capacitance	Coss	$V_{GS} = 0V,$		140		pF	
Reverse Transfer Capacitance	Crss	f = 1MHz		70			
Switching Characteristics							
Turn-On Delay Time	td(on)	$V_{DD} = -15V,$		8	15		
Rise Time	tr	I _D =-1A,		15	25	20	
Turn-Off Delay Time	td(off)	$V_{GEN} = -10V,$		15	25	115	
Fall-Time	tf	$Rg = 6\Omega$		10	17		
Total Gate Charge	Qg	V _{DS} = -15V,		10	15		
Gate-Source Charge	Gate-Source Charge Qgs			2.2		nc	
Gate-Drain Charge	Qgd	I _D = -5A		2			

 $1\,{\scriptstyle \times}\,$ Pulse width limited by Max. junction temperature.

 $2 \$ Pulse width <300us , duty cycle <2%.

3、Surface Mounted on FR4 Board, t < 10 sec.

Typical Performance Characteristics

Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Package Information

• Package Type:SOP8

DIM	Millimeters		Inches		
	Min	Мах	Min	Мах	
А	1.3	1.8	0.0512	0.0709	
A1	0.05	0.25	0.002	0.0098	
A2	1.25	1.65	0.0492	0.065	
A3	0.5	0.7	0.0197	0.0276	
b	0.3	0.51	0.0118	0.0201	
С	0.17	0.25	0.0067	0.0098	
D	4.7	5.1	0.185	0.2008	
E	5.8	6.2	0.2283	0.2441	
E1	3.8	4	0.1496	0.1575	
е	1.27	(TYP)	0.05(TYP)	
h	0.25	0.5	0.0098	0.0197	
L	0.4	1.27	0.0157	0.05	
L1	1.04(TYP)		0.0409(TYP)		
θ	0	8°	0	8°	
c1	0.25(TYP)		0.0098	0.0098(TYP)	

- The contents of this document will be updated with the product's improvement without prior notice. Please consult our sales staff before using this document to ensure that you are using the latest version.
- The application circuit examples described in this document are only used to indicate the representative use of the product and do not guarantee the design of mass production.
- Please use this product within the limits stated in this document. We will not be responsible for any damage caused by improper use.
- The products described in this document are not allowed to be used in equipment or devices that affect the human body without the written permission of our company, including but not limited to: health equipment, medical equipment, disaster prevention equipment, fuel control equipment, automobile equipment, aviation equipment and vehicle equipment.
- Although our company has always been committed to improving product quality and reliability, semiconductor products have a certain probability of malfunction or wrong work. To prevent personal injury or property damage caused by such accidents, please pay full attention to safety design, for example: Alternate design, fire protection design, and prevention of wrong action design.
- When exporting this product or this document overseas, you should abide by applicable import and export control laws.
- Copying or reprinting part or all of this document in any form without the permission of our company is strictly prohibited.