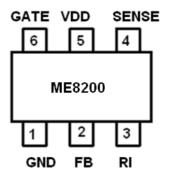


Current Mode PWM Controller With Frequency Shuffling ME8200

General Description

ME8200 is a highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter applications in sub 30W range. PWM switching frequency at normal operation is externally programmable and trimmed to tight range. At no load or light load condition, the IC operates in extended 'burst mode' to minimize switching loss. Lower standby power and higher conversion efficiency is thus achieved.VDD low startup current and low operating current contribute to a reliable power on startup design with ME8200. A large value resistor could thus be used in the startup circuit to minimize the standby power. The internal slope compensation improves system large signal stability and reduces the possible subharmonic oscillation at high PWM duty cycle output. Leading-edge blanking on current sense(CS) input removes the signal glitch due to snubber circuit diode reverse recovery and thus greatly reduces the external component count and system cost in the design. ME8200 offers complete protection coverage with automatic self-recovery feature including Cycle-by-Cycle current limiting (OCP), over load protection (OLP), VDD over voltage clamp and under voltage lockout (UVLO). Gate-drive output is clamped to maximum 18V to power MOSFET. Excellent EMI protect the performance is achieved with frequency shuffling technique together with soft switching control at the totem pole gate drive output. Tone energy at below 20KHZ is minimized in the design and audio noise is eliminated during operation. ME8200 is offered in SOT23-6 package.

Features


- Frequency Shuffling Technology for Improved EMI Performance.
- Extended Burst Mode Control For Improved Efficiency and Minimum Standby Power Design
- Audio Noise Free Operation
- External Programmable PWM Switching Frequency
- Internal Synchronized Slope Compensation
- Low VDD Startup Current and Low Operating Current (1.4mA)
- Leading Edge Blanking on Current Sense Input
- Good Protection Coverage With Auto Self-Recovery
- VDD Over Voltage Clamp and Under Voltage Lockout with Hysteresis (UVLO)
- Gate Output Maximum Voltage Clamp (20V)
- Line Input Compensated Cycle-by-Cycle Over-current Threshold Setting For Constant Output Power Limiting Over Universal Input Voltage Range.
- Overload Protection (OLP)

Typical Application

Offline AC/DC flyback converter for

- Battery Charger
- Power Adaptor
- Set-Top Box Power Supplies
- Open-frame SMPS

Pin Configuration

Terminal Assignments

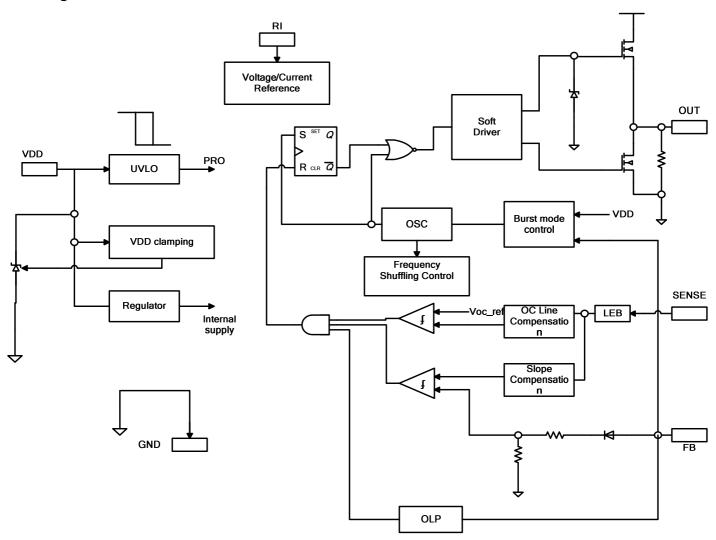
Pin Name	I/O	Description
GND	Р	Ground
FB	1	Feedback input pin. The PWM duty cycle is determined by voltage level into this pin and SENSE pin input.
RI	I	Internal Oscillator frequency setting pin. A resistor connected between RI and GND sets the PWM frequency.
SENSE	I	Current sense input pin. Connected to MOSFET current sensing resistor node.
V_{DD}	Р	Chip DC power supply pin.
GATE	0	Totem-pole gate drive output for the power MOSFET.

Absolute Maximum Ratings

Parameter	Value
V _{DD} DC Supply Voltage	40 V
V _{DD} Zener Clamp Voltage Note	V _{DD} _Clamp+0.1V
V _{DD} DC Clamp Current	10 mA
V _{FB} Input Voltage	-0.3 to 7V
VSENSE Input Voltage to Sense Pin	-0.3 to 7V
VRI Input Voltage to RI Pin	-0.3 to 7V
Min/Max Operating Junction Temperature TJ	-20 to 150 °C
Min/Max Storage Temperature Tstg	-55 to 160 °C

Recommended Operating Condition

Symbol	Parameter	Min -Max	Unit
V_{DD}	V _{DD} Supply Voltage	10 to 30	V
RI	RI Resistor Value	100	Kohm
TA	Operating Ambient Temperature	-20 to 85	°C


Package Dissipation Rating

Package	RθJA (°C/W)	
SOT23-6	200	

V2.0 <u>www.microne.com.cn</u> 2

Block Diagram



Electrical Characteristics

 $(TA = 25^{\circ}C \text{ if not otherwise noted})$

Symbol	ot otherwise noted) Parameter	Test Conditions	Min	Тур	Max	Unit
Supply Voltage		rest conditions		יאָרי	Max	Ome
I_V _{DD} _Startup	V _{DD} Start up Current	V_{DD} =12.5V,RI=100K,Measure Leakage current into V_{DD}		0.54	3	uA
I_V _{DD} _Ops	Operation Current	V _{DD} =16V, RI=100Kohm, VFB=3V		1.5		mA
UVLO(ON)	V _{DD} Under Voltage Lockout Enter		7.5	8.5	9.5	V
UVLO(OFF)	V _{DD} Under Voltage Lockout Exit (Recovery)		13.5	14.5	15.5	V
V _{DD} _Clamp	V _{DD} Zener Clamp Voltage	$I_{VDD} = 5 \text{ mA}$		33		V
Feedback Inpu	ut Section(FB Pin)					
AVCS	PWM Input Gain	ΔVFB /ΔVcs		2.0		V/V
V_{FB_Open}	V _{FB} Open Loop Voltage			4.8		V
I _{FB_Shor} t	FB pin short circuit current	Short FB pin to GND and measure current		1.2		mA
V_{TH_0D}	Zero Duty Cycle FB Threshold Voltage	V _{DD} = 16V, RI=100Kohm			0.75	V
V_{TH_PL}	Power Limiting FB Threshold Voltage			3.5		V
TD_PL	Power limiting Debounce Time			35		mS
ZFB_IN	Input Impedance			6		Kohm
DC_MAX	Maximum Duty Cycle	V _{DD} =18V, RI=100Kohm, FB=3V, CS=0		75		%
Current Sense	e Input(Sense Pin)					
T_blanking	Leading edge blanking time	RI = 100 Kohm		300		nS
ZSENSE_IN	Input Impedance			40		Kohm
TD_OC	Over Current Detection and Control Delay	V _{DD} = 16V, CS>V _{TH} _OC, FB=3.3V		75		nS
V_{TH_OC}	Over Current Threshold Voltage at zero Duty Cycle	FB=3.3V, RI=100 Kohm	0.65	0.7	0.75	V
Oscillator						
Fosc	Normal Oscillation Frequency	RI = 100 Kohm	60	65	70	KHZ
Δf_Temp	Frequency Temperature Stability	V _{DD} = 16V, RI=100Kohm, TA -20°C to 100 °C		5		%
Δf_V_{DD}	Frequency Voltage Stability	V _{DD} = 12-25V, RI=100Kohm		5		%
RI_range	Operating RI Range		50	100	150	Kohm
V_RI_open	RI open load voltage			2		V
Fosc_BM	Burst Mode Base Frequency	V _{DD} = 16V, RI = 100Kohm		22		KHZ

Gate Drive Output							
V _{OL}	Output Low Level	$V_{DD} = 16V$, $Io = -20 \text{ mA}$			8.0	V	
V _{OH}	Output High Level	V _{DD} = 16V, lo = 20 mA	10			>	
V_Clamp	Output Clamp Voltage Level			18		>	
T_r	Output Rising Time	V _{DD} = 16V, CL = 1nf		220		nS	
T_f	Output Falling Time	V _{DD} = 16V, CL = 1nf		70		nS	
Frequency Shuffling							
∆f_OSC	Frequency Modulation range /Base frequency	RI=100K	-3		3	%	
f_shuffling	Shuffling Frequency	RI=100K		64		HZ	

Operation Description

The ME8200 is a highly integrated PWM controller IC optimized for offline flyback converter applications in sub 30W power range. The extended burst mode control greatly reduces the standby power consumption and helps the design easily meet the international power conservation requirements.

> Startup Current and Start up Control

Startup current of ME8200 is designed to be very low so that VDD could be charged up above UVLO threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet provides reliable startup in application. For AC/DC adaptor with universal input range design, a 2 M Ω , 1/8 W startup resistor could be used together with a VDD capacitor to provide a fast startup and low power dissipation solution.

Operating Current

The Operating current of ME8200 is low at 1.4mA. Good efficiency is achieved with ME8200 low operating current together with extended burst mode control features.

Frequency shuffling for EMI improvement

The frequency Shuffling/jittering (switching frequency modulation) is implemented in ME8200. The oscillation frequency is modulated with a random source so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore reduces system design challenge.

Extended Burst Mode Operation

At zero load or light load condition, majority of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the number of switching events within a fixed period of time. Reducing switching events leads to the reduction on the power loss and thus conserves the energy.

ME8200 self adjusts the switching mode according to the loading condition. At from no load to light/medium load condition, the FB input drops below burst mode threshold level. Device enters Burst Mode control. The Gate drive output switches only when VDD voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend. The frequency control also eliminates the audio noise at any loading conditions.

Oscillator Operation

A resistor connected between RI and GND sets the constant current source to charge/discharge the internal cap and thus the PWM oscillator frequency is determined. The relationship between RI and switching frequency follows the below equation within the specified RI in Kohm range at nominal loading operational condition.

Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in ME8200 current mode PWM control. The switch current is detected by a sense resistor into the sense pin. An internal leading edge blanking circuit chops off the sense voltage spike at initial MOSFET on state due to Snubber diode reverse recovery so that the external RC filtering on sense input is no longer required. The current limit comparator is disabled and thus cannot turn off the external MOSFET during the blanking period. PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

> Internal Synchronized Slope Compensation

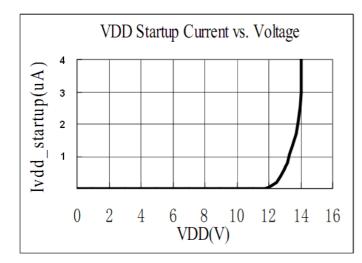
Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

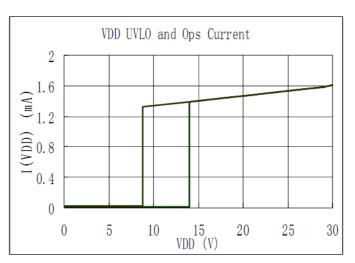
Gate Drive

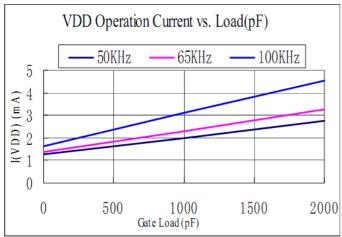
ME8200 Gate is connected to an external MOSFET gate for power switch control. Too weak the gate drive strength results in higher conduction and switch loss of MOSFET while too strong gate drive output compromises the EMI.A good tradeoff is achieved through the built-in totem pole gate design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme. An internal 18V clamp is added for MOSFET gate protection at higher than expected VDD input.

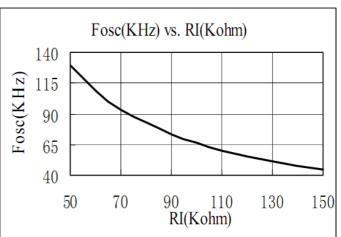
Protection Controls

Good power supply system reliability is achieved with its rich protection features including Cycle-by-Cycle current limiting (OCP), Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on VDD (UVLO).

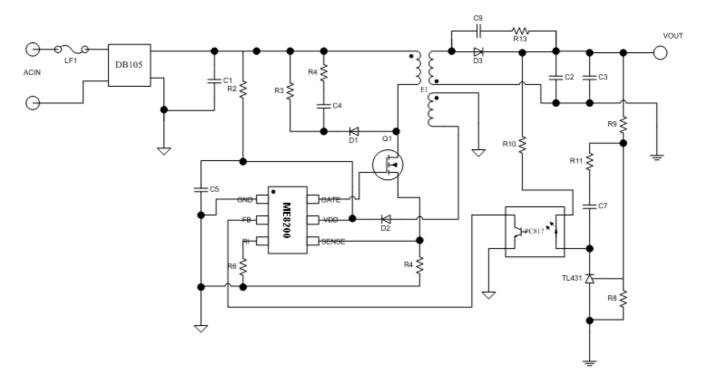

With Microne Proprietary technology, the OCP threshold tracks PWM Duty cycles and is line voltage compensated to achieve constant output power limit over the universal input voltage range with recommended reference design.


At overload condition when FB input voltage exceeds power limit threshold value for more than TD_PL, control circuit reacts to shut down the output power MOSFET. Device restarts when VDD voltage drops below UVLO limit. VDD is supplied by transformer auxiliary winding output. It is clamped when VDD is higher than threshold value. The power MOSFET is shut down when VDD drops below UVLO limit and device enters power on start-up sequence thereafter.

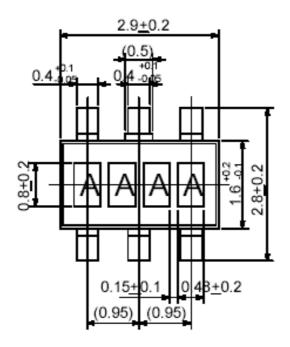

V2.0 www.microne.com.cn 6

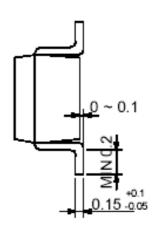


Characterization Plots(VDD=16V, RI=100Kohm, TA=25°C condition applies if not otherwise noted.)



V2.0 <u>www.microne.com.cn</u> 7


Typical Applications



Packaging Information:

SOT23-6

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
 described herein whose related industrial properties, patents, or other rights belong to third parties.
 The application circuit examples explain typical applications of the products, and do not guarantee the
 success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.