

ME5302

内置 DCDC 升压、AB/ D 切换、4W 单声道音频功放

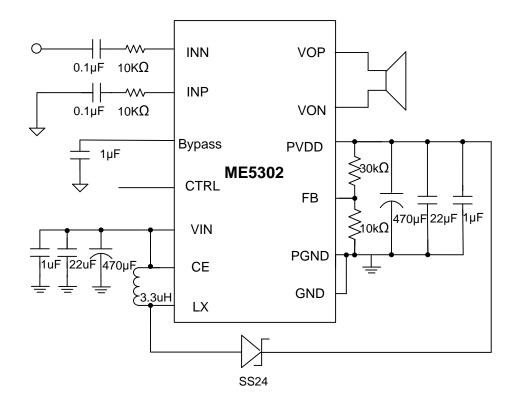
概述

ME5302是一款集成了BOOST升压模块,带AB类/D 类工作模式切换功能、4W单声道音频功放。集成BOOST 模块输出电压可以通过电阻分压灵活设置,当BOOST模 块开启,将音频模块的工作电压升压到5V时,可以为3Q 的负载提供4W恒定功率,而且BOOST模块可以单独提供 高达3A恒定的电流输出;当BOOST模块关闭,音频模块 的工作电压为电源电压。ME5302以通过CTRL管脚使芯 片在AB类或者D类工作模式之间切换,以匹配不同的应用 环境。ME5302无需滤波器的PWM调制结构及反馈电阻 内置方式减少了外部元件、PCB面积和系统成本。 ME5302内置过流保护、过热保护及欠压保护功能,有效 地保护芯片在异常工作状况下不被损坏。ME5302提供 ESOP16封装,额定的工作温度范围为-40℃至85℃。

特点

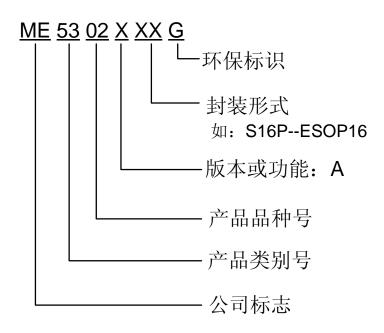
- 集成BOOST升压模块
- AB类/D类工作模式切换通过一线脉冲控制
- 低功耗关断模式通过一线脉冲控制
- 输出功率4W(PVDD=5V,R_L=3Ω)
- 0.1%THD (1W输出功率)
- 优异的全带宽EMI抑制能力
- 优异的"上电,掉电"噪声抑制
- 工作电压范围: 2.5V~5.5V
- 过流保护、过热保护、欠压保护

应用场合


- 蓝牙音箱
- 手提电脑
- 台式电脑
- 低压音响系统

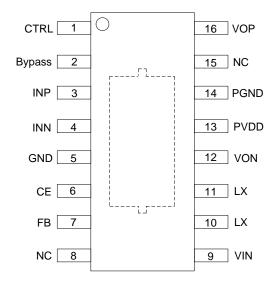
封装形式

•16pin: ESOP16



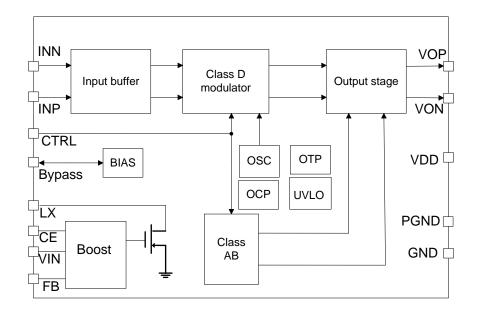
典型应用图

选购指南


产品型号说明

V01 <u>www.microne.com.cn</u> Page 2 of 13

产品脚位图



脚位功能说明

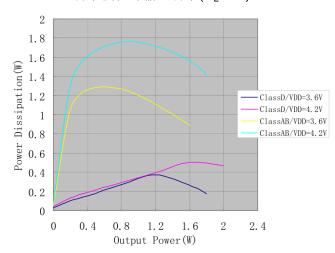
管脚号	管脚符号	描述
1	CTRL	关断以及AB类/D类切换控制, (低电平关断)
2	Bypass	参考电压外接电容
3	INP	输入正端
4	INN	输入负端
5	GND	升压模块功率地
6	CE	升压模块使能端
7	FB	反馈电压引脚
8	NC	悬空引脚
9	VIN	升压模块电源输入端
10, 11,散热盘	LX	升压调整管输入端
12	VON	音频输出负端
13	PVDD	音频模块电源端
14	PGND	音频功率地
15	NC	悬空引脚
16	VOP	音频输出正端

芯片功能示意图

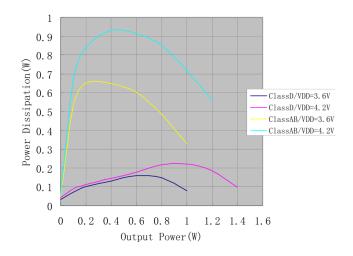
极限参数

参数	符号	范围	单位
电源电压	VIN	2.5 to 5.5	V
输入电压	INN/INP	-0.3~PVDD	V
工作温度	T _{OPR}	-40~+85	$^{\circ}$ C
存储温度	T _{STG}	-65~+150	$^{\circ}$
最大结温	T _{MJ}	最小 150	$^{\circ}$ C
焊接温度	T _{SD}	220,10Sec	$^{\circ}\! \mathbb{C}$
封装热阻抗	θја	70	°C/W

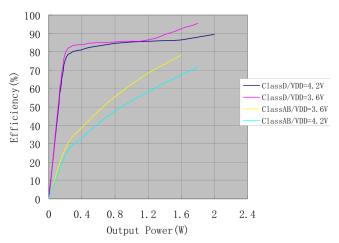
注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

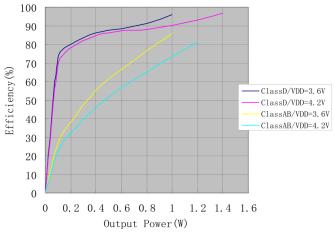

电气特性 (T_A=25℃, VIN=3.7V, PVDD=5V, 如无特殊说明.)

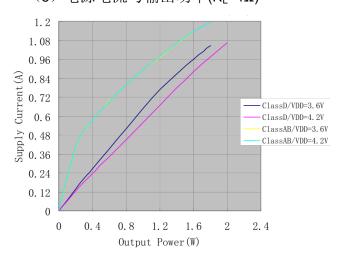
符号	参数	测试条件		最小值	典型值	最大值	单位
VIN	电源电压			2	-	5.5	V
		THD=1%, AB 类,f=1KHz,R=3Ω		-	3.2	-	W
		THD=10%,AB 类,f=1KHz,R=3Ω		-	3.9	-	W
		THD=1%,AB 类	-	2.2	-	W	
D.	 輸出功率 _	THD=10%,AB 类,f=1KHz,R=4Ω		-	3.1	-	W
Po	- 柳山均平 -	THD=1%,D 类,f=1KHz,R=3Ω		-	3.3	-	W
		THD=10%,D 类,f=1KHz,R=3Ω		-	4.0	-	W
		THD=1%,D 类,f=1KHz,R=4Ω		-	2.2	-	W
		THD=10%,D 类,f=1KHz,R=4Ω		-	3.2	-	W
THD	失真度	f=1KHz, D 类,R=3Ω,Po=0.5W		-	0.1	-	%
PSRR	中 7年4年11	217Hz		-	-80	-	dB
	电源抑制比 _	20KHz		-	-72	-	
CMRR	共模抑制比			-	-70	-	dB
η	效率	PVDD=5V,Po=2W, R=4Ω		-	80	-	%
	静态电流	AB类	CTRL=5V, PVDD=5V,No load	-	20	-	mA
l _{DD}		D类		-	13	-	
I _{SD}	关断漏电流	V _{CE} =0V		-	0.02	0.5	μA
fsw	功放开关频率	PVDD=3V~5.5V		-	380	-	KHz
Vos	输出失调电压	PVDD=5V, V _{ON} -V _{OP}		-	10	50	mV
V _{IH}	逻辑控制高电平			1.4	-	-	V
V _{IL}	逻辑控制低电平			-	-	0.4	V
T _{OFF}	CTRL 关断时间			100	-	-	μs
V _{FB}	反馈电压			1.225	1.25	1.275	V
Fosc	升压振荡器频率			0.8	1.0	1.2	MHz
Tss	软启动时间				2		ms



ME5302典型参考特性(T_A=25℃,VIN=3.7V,PVDD=5V,f=1kHz,Gain=12V/V,无其他说明)

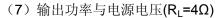

(1) 功率损耗与输出功率(R_L=4Ω)

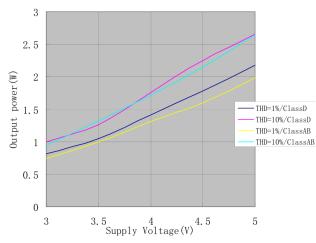

(2) 功率损耗与输出功率(R_L=8Ω)

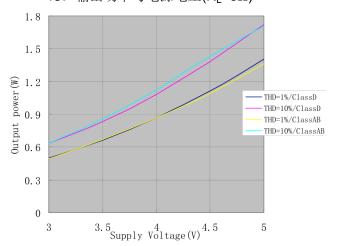

(3) 效率与输出功率曲线(R_L=4Ω)

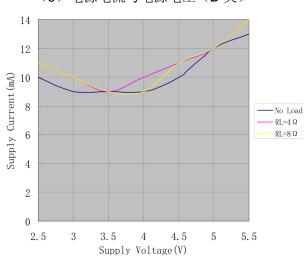
(4) 效率与输出功率曲线(R_L=8Ω)

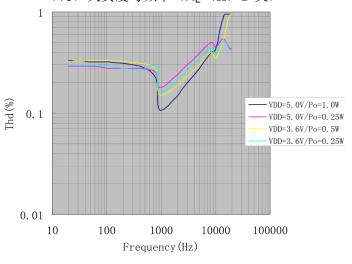
(5) 电源电流与输出功率(R_L=4Ω)

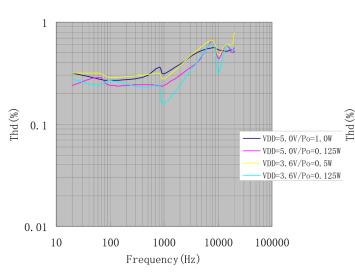


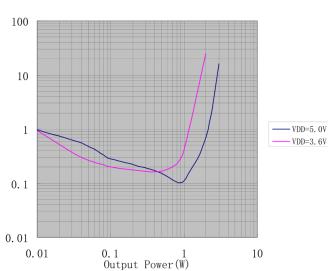

(6) 电源电流与输出功率(R_L=8Ω)

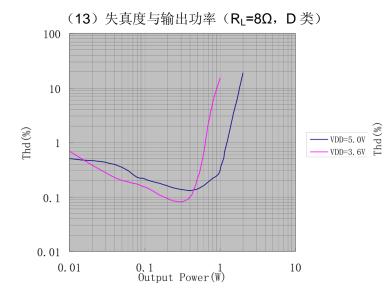

V01 www.microne.com.cn Page 6 of 13

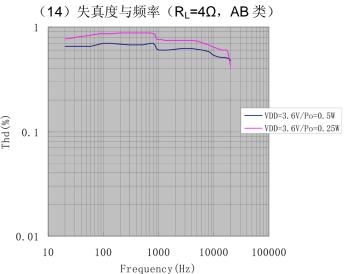



(8) 输出功率与电源电压(R_1 =8 Ω)

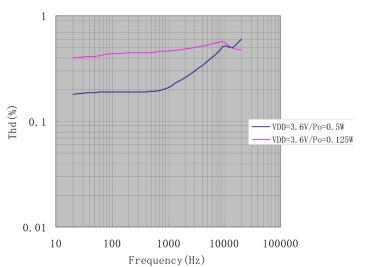

(9) 电源电流与电源电压(D类)


(10) 失真度与频率 (R_L=4Ω, D 类)


(11) 失真度与频率 (R_L =8 Ω , D类)

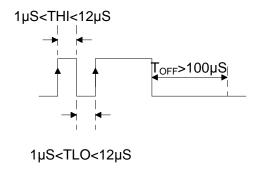


(12) 失真度与输出功率 (R_L =4 Ω , D 类)



(15) 失真度与频率(R_L =8 Ω ,AB类)

V01 <u>www.microne.com.cn</u> Page 8 of 13


功能性说明

ME5302是集成升压模块单声道AB类,D类工作模式切换功能的音频功率放大器。芯片内部集成了反馈电阻,放大器的增益可以在外围通过输入电阻设置,工作模式通过管脚CTRL设置,如下表:

CTRL	工作模式
一个上升沿	AB类
连续两个上升沿	D类
长低(>100us)	低功耗关断

AB 类, D 类切换功能: AB类,D类切换控制功能和芯片低功耗关断功能共用一个管脚。通过一线脉冲控制,在AB 类/D类模式之间动态切换。当CTRL管脚检测到一个上升沿时,芯片工作在 AB 类模式;当CTRL管脚连续检测到两个上升沿时,芯片工作在D类模式。CTRL管脚拉低并且保持100us以上芯片进入低功耗关断模式。芯片进入低功耗关断模式以后。如要重新进入其中一种工作模式必须重新设置。示意图如下:

加在 CTRL线脉冲高电平宽度(THI)要求 1us<THI<12us。低电平宽度(TLO)要求1us<TLO<12us。进入低功耗关断模式低电平保持时间(TOFF)要求 TOFF>100us。时序图如下:

桥式输出模式

ME5302工作在桥式输出模式,外接电阻Ri,总增益为Av = 120k/Ri

输入电容 Ci 和输入电阻 Ri 选择

输入电容和输入电阻构成高通滤波器,截止频率为fc=1/(2π×Ri×Ci)。过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于100Hz~150Hz的低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致pop噪声出现,因此,小的耦合电容可以减少该噪声。

旁路电容 Cb 选择

Cb决定ME5302静态工作点的稳定性,所以当开启有pop噪声时它的值非常关键。Cb越大,芯片的输出倾斜到静

V01 www.microne.com.cn Page 9 of 13

态直流电压(即PVDD/2)越慢,但有利于减小开启的爆裂声。Cb通常取0.1~1uF。

EMI增强技术

ME5302内置EMI增强技术,在全带宽范围内极大地降低了EMI干扰,最大限度地减少对其他部件的影响。

保护电路

当芯片发生输出引脚与地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,ME5302自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,ME5302继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

电感器

ME5302推荐的电感值(L值为3.3μH)。

要改变L值时,需注意以下的几点: L值对最大输出电流 (IOUT)和效率(η)产生很大的影响。L值变得越小时,电感器峰值电流(IPK) 就变得越大,提高电路的稳定性,并使可稳定获取的IOUT增大。并且,L值变得更小时,由于内接晶体管的电流驱动能力变得不足,而导致效率的降低,IOUT也会逐渐减少。L值变大时,切换晶体管的IPK所引起的损耗变小,达到一定的L值时效率变为最大。并且,L值变得更大时,电感器的串联电阻所引起的损耗也变大,而导致效率的降低。

注意: 在选用电感器时,请注意电感器的容许电流。超过此容许值的电流流入电感器会引起电感器处于磁气饱和状态,明显地降低工作效率,或因大电流而引发IC遭受破坏。因此,请选用IPK不超过容许电流的电感器。在非连续模式、连续模式下的理想状态的IPK如以下公式所示。

$$I_{PK} = \sqrt{\frac{2 \times I_{OUT} \times (V_{OUT} + V_D^{*2} - V_{IN})}{f_{OSC} \times L}}$$
 (非连续模式)
$$I_{PK} = \frac{V_{OUT} + V_D^{*2}}{V_{IN}} \times I_{OUT} + \frac{(V_{OUT} + V_D^{*2} - V_{IN}) \times V_{IN}}{2 \times (V_{OUT} + V_D^{*2}) \times f_{OSC}^{*1} \times L}$$
 (连续模式)

- *1. fosc为振荡频率。
- *2. V_D为二极管的正向电压。参考值为0.4 V。

但由于实际状态不是理想状态,因此会流入上述计算值以上的电流,请在实际测试中进行充分的评价。

二极管

请使用满足以下条件的外接二极管:

- 正向电压低(VF<0.3V,肖特基势垒二极管等)
- 切换速度快(低于50ns)
- 反向耐压在输出电压 (VOUT)+峰值电压以上
- 额定电流在电感器峰值电流(IPK)以上

V01 www.microne.com.cn Page 10 of 13

输入电容器(C_{IN})、BOOST输出电容器(C_{OUT})

输入电容器(CIN) 可通过降低电源阻抗、输入电流平均化而提高效率。请根据使用电源的阻抗的不同而选用CIN值。 推荐根据负载电流的大小不同使用的电容值为10 μF~22 μF陶瓷电容,如果负载电流较大,建议再增加并联一个22uF 陶瓷电容,同时再并联470uF电解电容。

由于输入电压经BOOST升压后的PVDD直接供电给音频功放,而音频功放在工作时对电源本身具有较大扰动,这时,电源端的滤波就非常重要。我们建议,在PVDD端至少放置一个1uF陶瓷电容来吸收高频纹波,并尽可能靠近PVDD芯片引脚。另外,PVDD端需放置一个不小于470uF的储能电容。这些电容应以最短的路径连接至安静可靠的地,以有效滤波。条件允许的情况下再增加并联一个10uF~22 uF陶瓷电容。

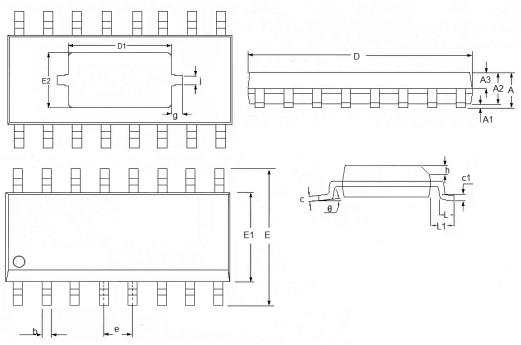
输出电压设定电阻(RFB1,RFB2)

ME5302可通过外接分压电阻器,将PVDD设定为任意的数值(<5.5V)。请在PVDD端子与PGND端子之间连接分压电阻器。由于V_{FB} = 1.25V (典型值),因此PVDD可按以下公式求出。

$$PVDD = 1.25 \times \left(1 + \frac{R_{FB1}}{R_{FB2}}\right)$$

为了将噪声的影响控制到最小限度,请尽量将 R_{FB1} 和 R_{FB2} 的分压电阻器连接到IC的附近。另外,为了避免受到噪声的影响,请调整 R_{FB1} 和 R_{FB2} 的数值,以便使 R_{FB1} + R_{FB2} <200 $k\Omega$ 。

注意事项


- 外接的电容器、电感器等请尽量安装在IC附近,并进行单点接地。
- 包含了DC-DC控制器的IC,会产生特有的纹波电压和尖峰噪声。另外,在接通电源时会流入冲击电流。这些现象会因所使用的线圈、电容器以及电源阻抗的不同而受到很大的影响。因此,设计时请在实际的应用电路上进行充分的评价。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 本IC的容许功耗因安装基板的尺寸、材料等不同而产生很大的变动。设计时请在实际应用电路上进行充分的评价。

V01 www.microne.com.cn Page 11 of 13

封装信息

● 封装类型: ESOP16

参数	尺寸 (mm)		尺寸 (Inch)		
	最小值	最大值	最小值	最大值	
А	1.35	1.75	0.0531	0.0689	
A1	0.05	0.2	0.0020	0.0079	
A2	1.3	1.6	0.0512	0.0630	
A3	0.6	0.71	0.0236	0.0280	
b	0.356	0.47	0.0140	0.0185	
С	0.2	0.24	0.0079	0.0094	
D	9.8	10.2	0.3858	0.4016	
Е	5.8	6.24	0.2283	0.2457	
E1	3.8	4	0.1496	0.1575	
е	1.27BSC		0.0500		
h	0.25	0.5	0.0098	0.0197	
L	0.4	0.8	0.0157	0.0315	
L1	1.05BSC		0.0413		
θ	0	8°	0	8°	
c1	0.25		0.0098		
D1(95*180)	4.57REF		0.1799REF		
E2(95*180)	2.41REF		0.0949REF		
g	0.51REF		0.02REF		
j	0.4REF		0.0157REF		

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- ◆ 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外, 应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。