VOLTAGE RANGE: 50-1000V

CURRENT: 3.0 A

Features

- Glass Passivated Die Construction
- Ideally Suited for Automatic Assembly
- Low Forward Voltage Drop, High Efficiency
- Low Power Loss
- Ultra-Fast Recovery Time
- Plastic Case Material has UL Flammability Classification Rating 94V-O

Mechanical Data

- Case: SMB/DO-214AA, Molded Plastic
- Terminals: Solder Plated, Solderable per MIL-STD-750, Method 2026
- Polarity: Cathode Band or Cathode Notch
- Marking: Type Number
- Weight: 0.093 grams (approx.)

SMB(DO-214AA)		
Dim	Min	Max
A	3.30	3.94
B	4.06	4.70
C	1.91	2.21
D	0.15	0.31
E	5.00	5.59
G	0.10	0.20
H	0.76	1.52
J	2.00	2.62
All Dimensions in $\mathbf{~ m m}$		

Maximum Ratings and Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Single phase, half wave, 60 Hz , resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	UF3AB	UF3BB	UF3DB	UF3GB	UF3JB	UF3KB	UF3MB	Unit
Maximum repetitive peak reverse voltage	$V_{\text {RRM }}$	50	100	200	400	600	800	1000	V
Maximum RMS voltage	$V_{\text {RMS }}$	35	70	140	280	420	560	700	V
Maximum DC blocking voltage	Voc	50	100	200	400	600	800	1000	V
Maximum average forward rectified current $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	I (Av)	3.0							A
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	100.0							A
Maximum instantaneous forward voltage at 3.0A	V_{F}		1.0		1.30		1.70		V
$\begin{array}{ll}\text { Maximum DC reverse current } & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \text { at rated DC blocking voltage } & \mathrm{TA}_{\mathrm{A}}=100^{\circ} \mathrm{C}\end{array}$	IR	$\begin{gathered} 5.0 \\ 250.0 \end{gathered}$							$\mu \mathrm{A}$
Maximum reverse recovery time (NOTE 1)	trr	50					75		ns
Typical junction capacitance (NOTE 2)	CJ	75							pF
Typical thermal resistance (NOTE 3)	Rөль	15.0							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating junction and storage temperature range	TJ,Tsta	-65 to +150							${ }^{\circ} \mathrm{C}$

Note: 1.Reverse recovery condition $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I} \quad \mathrm{R}=1.0 \mathrm{~A}, \mathrm{Irr}=0.25 \mathrm{~A}$
2.Measured at 1 MHz and applied reverse voltage of 4.0 V D.C.
3. Thermal resistance from junction to lead and from junction to ambient with P.C.B mounted on $0.3 \times 0.3^{\prime \prime}(8.0 \times 8.0 \mathrm{~mm})$ Copper pad area

Fig. 1 - Maximum Forward Current Derating Curve

Fig. 3 - Typical Instantaneous Forward Characteristics

Fig. 5 - Typical Junction Capacitance

Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current

Fig. 4 - Typical Reverse Leakage Characteristics

Percent of Rated Peak Reverse Voltage (\%)

